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Abstract

Process management is an extremely important concept
in both business and scientific communities. Several work-
flow management tools have been proposed in recent years
offering advanced functionality in various domains. In the
business world, workflow vendors offer commercial and
customized solutions targeting specific users. In the scien-
tific world, several open-source workflowmanagement tools
are freely available. However, they are directed toward ser-
vice aggregation rather than distributed process manage-
ment. Little consideration is given to the needs of the client
in terms of mapping the process flow of the client. In the
Grid community it is essential that the Grid users have such
a tool available enabling them to orchestrate complex work-
flows on the fly without substantial help from the service
providers. At the same time it is important that the Grid user
not be burdened with the intricacies of the workflow system.
With the perspective of the Grid user in mind, an extensible
client-side workflow management system, called GridAnt,
has been developed. This paper discusses the design princi-
ples, functionality, and application of the proposed GridAnt
workflow manager.

1 Introduction

The term workflow can be defined as the orchestration
of a set of activities to accomplish a larger and sophisti-
cated goal, referred to as a business process [1]. Signifi-
cant research has been conducted in recent years to auto-
mate these activities using advanced workflow management
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tools. Some of the most popular and sophisticated workflow
systems available in market include Staffware [2], COSA
[3], Inconcert [4], Eastman Software [5], Domino Work-
flow [6], Websphere MQWorkflow [7], Visual Workflo [8],
and I-Flow [9]. These products offer extensive functionality
and support a variety of workflow patterns [10]. However,
all of them are propriety softwares and commercially mo-
tivated, making it infeasible to use them for open-source
research projects. Although a few general-purpose open-
source workflow toolkits [11] are available for use, they are
platform-dependent and offer limited functionality. While
analyzing some of the flow patterns in correlation with hard-
ware computing patterns we notice an increased complexity
and sophistication of the flowpatterns that enable collabora-
tive workflow management. In future we expect that that
this will even include the derivation of knowledge flow pat-
terns.

Much of the work reported here has been heavily influ-
enced by the authors’ experience with scientific workflows
[12, 13, 14, 15]. The concepts of workflow and process or-
chestration are extremely important in the context of Grid
computing. Grid computing focuses on secure and col-
laborative resource sharing across multiple, geographically
distributed institutions. In the Grid environment, work-
flow management becomes more complex because inter-
process communications span institutional boundaries, re-
quiring support for multiple security policies. A large num-
ber of orchestrating tools have been proposed and used by
the Grid community. Webflow [16] and Triana [17] of-
fer a visual programming model for dynamic orchestra-
tion of high-performance computing applications from a
group of predefined commodity software modules. Sym-
phony [18] provides an abstract code composition and ma-
nipulation framework for Grid metacomputing systems in
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Figure 1. Computing flow patterns are evolv-
ing from simple control flows to sophisticated
knowledge flow patterns.

a secure environment. The XCAT [19] framework, based
on the Common Component Architecture (CCA) [20], pro-
vides mechanisms to formulate reusable distributed soft-
ware components to be used in CCA-compliant runtime
frameworks. The GridFlow [21] system provides a flexi-
ble agent-based mechanism for dynamic scheduling of Grid
jobs within a global Grid workflow service. Ptolemy II
[22] is a Java-based component assembly architecture with
a rich visual interface. LabVIEW [23] offers a powerful sci-
entific environment for data acquisition, analysis, and pre-
sentation. With the shift in the Grid architecture toward a
service-oriented framework [24], several new specifications
such as Business Process Execution Language for Web Ser-
vices (BPEL4WS) [25] and Grid Services Flow Language
(GSFL) [26] are being researched in the Grid context.
All of the Grid-enabled frameworks described above fo-

cus on the aggregation of activities into a unified, robust,
and flexible backend functionality. The workflow is de-
signed and implemented by experts and administrators pro-
viding the consolidated application to the end users, but it
cannot be controlled by the end users. There is no conve-
nient tool available to the Grid community that allows the
user to express and control the execution sequence without
having any expertise in sophisticated workflow systems or
control of the backend functionality.
For example, consider the simplistic, yet very common,

scenario shown in Figure 2. A Grid user needs to run
an experiment on a Grid resource B. To do so, the user
needs to transfer a set of files from resource A; and the
output produced at resource B needs to be stored on re-
source C. Independent of the mechanism by which the ex-

Figure 2. Use Case for Client-Controllable
Workflow

ecution framework at resource B is developed, the Grid
user needs a workflow system to automate such a flow of
control and data. Currently, such a flow is managed ex-
plicitly under human control or through shell scripts. Ex-
plicit human control gets unwieldy once the level of com-
plexity of such flows increases. On the other hand, shell
scripts are platform-dependent and do not provide sufficient
means for data communication between dependent activi-
ties. Little research has been done in the Grid community
to provide with a platform-independent, robust, and conve-
nient mechanism for client-controllable workflow systems.
The Condor DAGMan meta-scheduler [27] allows for the
expression of dependencies of Condor jobs. However, it
functions only in the context of Condor jobs, and its ap-
plicability in the domain of generic Grid tasks needs to
be researched. The Grid Workflow specification document
[28] provides with a flexible vocabulary for orchestrating
user-controlled experimental runs. Nevertheless, it requires
a development of a workflow engine whose functionality
needs to be thoroughly tested within the community. Moti-
vated by the need to develop a simple, extensible, platform-
independent, and client-controllable workflow mechanism,
we present the GridAnt [29] system.

The rest of this paper is structured as follows. Section 2
outlines the details of the GridAnt workflow system. It dis-
cusses the workflow engine, the GridAnt runtime environ-
ment, the Grid-centric workflow vocabulary, and the Gri-
dAnt monitoring tool. Section 3 discusses the application
of the GridAnt framework to an advanced scientific appli-
cation. Section 4 gives an overview of the limitations of the
basic GridAnt mechanisms and proposes a service-oriented
solution to overcome it. Section 5 summarizes the paper
and outlines future research.



2 GridAnt

Figure 3. GridAnt Workflow System

The proposed GridAnt architecture consists of the fol-
lowing major components (see Figure 3):

• Workflow engine

• Runtime environment

• Workflow vocabulary

• Workflow monitoring

2.1 Workflow Engine

At the heart of the GridAnt system is its workflow en-
gine. The engine is responsible for directing the flow of
control and data through multiple GridAnt activities. It is
the central controller that handles task dependencies, failure
recoveries, performance analysis, and process synchroniza-
tion. Rather than developing the the engine from scratch,
we reuse an existing commodity tool called Ant1 [31]. Ant
is an extremely popular build tool in the Java community.
It is open source, written in Java, and freely distributed by
the Apache Software Foundation [32]. Traditionally Ant
provides a flexible mechanism to express script dependen-
cies in a project build process. In GridAnt, however, we
use Ant to manage dependencies between different Grid-
enabled tasks. Some of the most prominent reasons for us-
ing Ant as our workflow engine are as follows:

• Ant is written in Java, providing platform inde-
pendence and immediate integration into the newly
adopted Grid services framework.

1Another option was the Jakarta Jelly [30] project. However, it is in its
development phase and is not a mature product.

• Ant tasks and dependencies can be conveniently ex-
pressed in XML.

• Ant is highly extensible, allowing us to incorporate
Grid-specific functionality.

• It is highly modular and can be embedded into other
Java applications.

• Ant distribution contains a large number of core and
contributed tasks that provide extensive functionality
similar to those available in shell scripts.

• Ant is a community project, thereby enjoying continu-
ous use, testing, and improvement over years. Hence,
it offers a reliable foundation for a sophisticated work-
flow system.

Although Ant provides an “out-of-the-box” solution for
expressing task dependencies and directing the flow of con-
trol in simple workflows, it lacks several aspects in support-
ing sophisticated workflow requirements. Apart from ex-
pressing task dependencies, it also supports sequential and
parallel execution containers that allow subtasks to be ex-
ecuted in sequence or in parallel, respectively. However,
even the most simplest process orchestration would require
functionality beyond that provided by Ant. To support ar-
bitrary control flows through dependency graphs, one must
support constructs that allow conditional execution, block
iteration (looping), exception and error handling, and sev-
eral other workflow patterns [10]. Further, Ant provides
mechanisms only to direct the flow of control. It lacks
the infrastructure to support workflow composition allow-
ing the output of one activity to become the input to an-
other. However, through additional components in the Gri-
dAnt system, we overcome this restriction, enabling Gri-
dAnt to support workflow orchestration and composition.
Irrespective of its limitations, Ant offers a robust, extensi-
ble, community-supported solution that can be reused with-
out any modification as the GridAnt engine.

2.2 Runtime Environment

As discussed in the preceding section, Ant lacks the
functionality to support workflow compositions. This is cer-
tainly an unacceptable restriction for complex Grid work-
flow activities that require intertask communication. It is
imperative to have a communication mechanism between
individual Grid activities to enable the exchange of runtime
data. A variety of communication models can be employed
over Ant based on the level of flexibility, control, and effi-
ciency desired. A simple solution could be to use the na-
tive file system for communication. Although it provides
considerable flexibility, the overhead associated with such a



Figure 4. Layered Commodity Architecture

mechanism would render it unusable. Ant provides mecha-
nisms to publish global user-defined properties that can be
accessed by all the tasks. However, these properties are
immutable and therefore significantly restrict the GridAnt
communication model. Mechanisms are available that al-
low the generation of mutable internal properties in Ant that
can be exploited for intertask communication. However,
this requires modification to the Ant-core, which is unde-
sirable. Further, Ant properties can take only string values,
a restriction that imposes considerable performance over-
head when runtime transformation between simple strings
and complex data structures is involved.

In order to overcome the deficiencies of Ant in the con-
text of an advanced workflow system, the GridAnt architec-
ture introduces a runtime environment that offers a globally
accessible whiteboard-style communication model. The
runtime environment is capable of hosting arbitrary data
structures that can be read and written by individual Gri-
dAnt tasks. The mechanism to identify the required in-
formation and process it eventually lies with the respective
Grid tasks. Additionally, the runtime environment supports
important constructs such as constants, arithmetic expres-
sions, global variables, array references, and literals. Such
artifacts elevate the functionality of the GridAnt system to
support complex multimodal intertask communication sim-
ilar to those supported in contemporary programming lan-
guages. Although the implementation specifics of the Gri-
dAnt runtime environment are beyond the scope of this pa-
per, we mention that the runtime environment is deployed in
the system without any modifications to the Ant-core. This
allows the GridAnt system to be compatible with future re-
leases of Apache Ant without any software engineering ef-
forts.

2.3 Workflow Vocabulary

A workflow system must either identify the individual
workflow activities at runtime [25] or predefine them at
compile time. The GridAnt system works with a set of
predefined activities or tasks2, thereby establishing a work-
flow vocabulary against which complex workflows can be
developed. The extensibility of Ant allows us to enhance
the existing Ant functionality into the Grid domain. Gri-
dAnt vocabulary can be incrementally improved by contri-
butions from both the Ant and GridAnt communities. We
note that GridAnt tasks can be categorized into two do-
mains, Ant-compatible and Ant-incompatible tasks. The
Ant-compatible tasks include those tasks that exclusively
rely on the functionality offered by Ant, thereby making
them compatible with any distribution of Ant. The Ant-
incompatible tasks include those that rely on the extended
GridAnt runtime environment to achieve its functionality.
These tasks cannot run with the basic installation of Ant
and need GridAnt at all times.
An extensive description of all the tasks developed as

a part of the GridAnt system is beyond the scope of this
paper. However, we briefly outline a partial list of the most
important tasks thatt we defined by the GridAnt framework
and we propose to implement.

• grid-setup: Establishes the Grid environment based on
client preferences. Specifically, it sets the client ma-
chine to use the Java CoG Kit [33], which forms the
basis of our Grid interactions.

• grid-authenticate: Initializes the system for subse-
quent authentication as part of a single sign on process
by the user to the Grid. In case of a Globus hosting en-
vironment, a security proxy is created that has limited
lifetime and is reused on behalf of the user to authen-
ticate to the system. The authentication mechanism is
dependent on the hosting environment. All Grid tasks
need this authentication preparation step.

• grid-execute: Executes a Grid task on the remote Grid
resource.

• grid-copy: Copies a file from one Grid resource to an-
other. Third-party transfers are supported through the
use of the GridFTP protocol.

• grid-cancel: Cancels the execution of the given job on
the remote machine.

• grid-query: Queries the Grid information services to
check the availability and capability of a Grid resource.

2Following the Ant terminology, we refer to individual workflow activ-
ities as tasks.



Figure 5. GridAnt Monitoring Interface

• grid-status: Queries the remote Grid resource to re-
solve the execution status of the given job.

• grid-ps: Queries the remote Grid resource to resolve
the execution status of all the jobs submitted by the
user.

Further, all important Ant tasks and task containers are
extended to use the GridAnt runtime environment facilitat-
ing inter-task synchronization and communication. For a
detailed description of GridAnt tasks, refer to [34]. Figure 6
shows a sample XML specification for expressing GridAnt
dependencies as depicted in Figure 2.
As shown in Figure 4, GridAnt adopts a layered ar-

chitecture containing commodity tools to implement its
Grid functionality. GridAnt tasks described above use
the abstractions provided by the Java CoG kit to interface
with Grid systems. The current CoG Kit implementation
provides execution facilities on Grid resources using the

Globus Toolkit version 2 [35] and version 3 [24]. Using
the CoG kit enables the GridAnt system to seamlessly in-
tegrate other Grid architectures such as [36], Condor [37],
and Legion [38] whenever they are supported by the CoG
Kit.

2.4 Workflow Monitoring

GridAnt is a fully functional command line tool where
the XML workflow specifications can be edited with any
text editor. Nevertheless, a graphical visualization tool
is also provided, allowing real-time monitoring of the
progress of the workflow. The visualization tool integrates
seamlessly with GridAnt, acting as a front-end to the work-
flow engine. A GridAnt workflow specification can be
loaded within the visualization tool, which can also initi-
ate the execution of the workflow. Upon loading of the
XML workflow specification, the visualization tool maps
the XML elements into a hierarchical graph. Various trans-



1 <target name=”sampleWorkflow”>
2 <sequential>
3 <grid-setup/>
4 <grid-authenticate/>
5 <grid-copy
6 name=”copyInputFile”
7 provider=”GT2”
8 security=”xmlSignature”
9 delegation=”limited”
10 from=”gsiftp://server1/inputFile”
11 to=”gsiftp://server2/inputFile”
12 parallelStreams=”4”
13 tcpBuffer=”16384”/>
14 <grid-execute
15 name=”myApplication”
16 provider=”GT2”
17 server = ”server2:1234”
18 security=”xmlEncryption”
19 delegation=”full”
20 executable = ”myApplication”
21 arguments=”-file inputFile”
22 directory=”/home/test”
23 localExecutable=”false”
24 redirect=”false”
25 outputFile=”outputFile”
26 errorFile=”outputFile”/>
27 <grid-copy
28 name=”copyOutputFile”
29 provider=”GT2”
30 security=”xmlSignature”
31 delegation=”limited”
32 from=”gsiftp://server2/outputFile”
33 to=”gsiftp://server3/outputFile”
34 parallelStreams=”4”
35 tcpBuffer=”16384”/>
36 </sequential>
37 </target>

Figure 6. GridAnt XML Specification

formations can then be used to restructure the hierarchical
graph into more meaningful user-friendly formats. For ex-
ample, a graph transformation can convert the dependen-
cies between GridAnt targets into graph edges connecting
the nodes representing the targets. Another transformation
converts <sequential> and <parallel> recursive elements
into a flow graph. The resulting graphs can be displayed us-
ing several views available in the visualization tool. A par-
ticularly significant view is the “Graph View”, which can
employ multiple layout engines to arrange the nodes in the
graph. After the workflow specification is loaded, the vi-
sualization tool can be used to start the execution of the
workflow. The feedback mechanism provided by the Gri-
dAnt engine is used to monitor the status of each element

Figure 7. Argonne National Laboratory’s Ad-
vanced Analytic Electron Microscope

in the workflow, and the visual appearance of the graphical
elements displayed by the visualization tool are changed ac-
cordingly.
The visualization tool can scale to accommodate large

specifications. Preliminary scalability tests have revealed
the possibility of displaying graphs having thousands of el-
ements (nodes and edges). The use of heuristic layout al-
gorithms with linear execution times allows displaying of
such graphs in relatively short times, in the order of tens of
seconds.

3 Application: Position-Resolved Diffraction

To validate our initial workflow design, we have applied
the GridAnt framework to a real-life scientific application.
A new experimental technique, named position-resolved
diffraction, is being developed to study nanoscale structures
as part of Argonne National Laboratory’s advanced analyt-
ical electron microscope. With this technique, the electron
beam from an analytical electron microscope is used to scan
a nanosized, disc-shaped magnetic specimen. At each sam-
pling point a two-dimensional image representing the re-
sulting diffraction pattern is acquired and stored (see Fig-
ure 7). The analysis of the spatial variation in the diffraction
pattern allows the researcher to study the form and direction
of the field lines in the magnetic field of the sample.
As much as one terabyte of data can be taken during such

an experiment. This analysis of the data requires a resource
rich Grid infrastructure to fulfill the real-time constraints.
The results need to be archived, remote compute resources
need to be reserved and made available during an experi-
ment, and the data needs to be moved to the compute re-



Figure 8. Asynchronous processes define a
workflow that is steered by the scientist to
support the problem-solving process with the
help of abstract Grid tasks.

sources where they will be analyzed. The results need to
be gathered and presented in a form that is meaningful to
the scientist. GridAnt provides a convenient abstraction for
formulating these tasks while reusing the patterns for file
transfer, job execution, and job management (see Figure 9).
At the same time it hides much of the complexity that the
Grid application user may not want to deal with. The over-
all application presents one of many scientific use patterns
that occur in high-end instrument scenarios. This includes a
high amount of interaction during an experiment that must
be dealt with in an adaptive and flexible way. Unexpected
and unpredicted experiment conditions must be considered.
Hence the instrument operators interface to the Grid must be
as simple as possible while at the same time providing the
much needed flexibility to interactively modify the experi-
ment setup. This is achieved by reusing our graphical com-
ponents and integrating them in a scientific problem solving
environment that targets the flexible use of such an instru-
ment.
The need for such a flexible infrastructure is demon-

strated through a simple experiment flow depicted in Figure
8. The elementary logic of the instrument control can be
expressed in a sequence of processes that depend on each
other. We distinguish the following processes

data acquisition that gathers the time-delayed images
from the electron microscope.

backup that backs up the incoming data.

data analysis that performs scientific calculations on the
time-delayed images.

result display that gathers the results from the data analy-
sis in a form easy to interpret by the scientist to make
further judgments for steering the experiment.

By using the GridAnt system, the scientific user can con-
veniently express a Grid-enabled experimental run in the
form of an XML specification. By monitoring the exper-
iment through GridAnt tools, the user can decide when,
what, and where to back up data gathered during the course
of the experiment.

4 GridAnt Workflow Service

Using the GridAnt system in an advanced scientific ap-
plication has taught us several important lessons. One of the
most important among them is that the GridAnt system de-
scribed in Section 2 requires that the client be connected to
it throughout the duration of the workflow run. This might
be an acceptable requirement for interactive or short batch
jobs. For jobs that require extensive execution times, how-
ever, such a requirement is unacceptable. Clearly, a mech-
anism is needed that allows users to submit their workflow
specifications, disconnect from the system, and reconnect at
a later time, retrieving all the information generated during
the disconnected period. Such a mechanism requires an ad-
ditional level of redirection through a proxy service that acts
on behalf of the user, ubiquitously maintaining a connection
to the GridAnt system. Ongoing research is focusing on the
transformation of the GridAnt system into a Grid service
[24] that provides the functionality of such a proxy.

Figure 10. GridAnt Service Architecture

The GridAnt Grid service accepts the remote submission
of an XML workflow specification, controls the flow be-
tween the various activities, and provides the Grid service-
enabled GridAnt client with a set of events to enable the



Figure 9. The data analysis for the electron microscope is formulated as workflow that uses Grid
resources. The progress of the calculation is updated in real time

visualization of the workflow run. As shown in GridAnt
service architecture (see Figure 10), the GridAnt client can
connect to the GridAnt factory to instantiate a new service
instance or query the GridAnt registry for existing work-
flow runs. The GridAnt service instance is composed of two
important modules: the GridAnt core and the event map-
per. The GridAnt core is responsible for accepting the XML
specification, controlling the workflow, and intertask com-
munication, and informing the event mapper about all the
workflow-related events generated by GridAnt. The event
mapper bridges the GridAnt event notification mechanism
into the OGSA event notification mechanism. This is es-
sential for the client applications to remotely monitor the
workflow progress via Grid service artifacts. The event
mapper logs all the events generated by it to be retrieved
and replayed at a later time, thereby simulating the work-

flow progress.

5 Summary and Future Work

Numerous workflow control systems have been proposed
in literature. Most of these assist in aggregating a set of ser-
vices that clients can conveniently use. This paper proposes
a workflow system, called GridAnt, that assists Grid users in
orchestrating a set of Grid activities and expressing complex
dependencies between them in XML. GridAnt essentially
consists of four components: a workflow engine, a runtime
environment, a workflow vocabulary, and a workflow mon-
itor. Apache Ant is selected as the GridAnt workflow en-
gine because of its extensibility and popularity in the Java
community. Several communication mechanisms between
GridAnt tasks are discussed. The current implementation



of GridAnt uses a global whiteboard style of communica-
tion mechanism that can exchange arbitrary formats of data
between independent tasks. A set of important Grid-centric
tasks are identified as the workflow vocabulary; being an ex-
tension to Ant, this workflow can be incrementally extended
by the Grid community. An elaborate visual monitoring in-
terface is also provided to the GridAnt system that enables
users to monitor the progress of their workflows.
Initial experiences with the GridAnt system emphasized

the need to extend our model into a service architecture.
The GridAnt service architecture comprises an application
factory, a registry, and the GridAnt service. The GridAnt
service has a GridAnt core that handles the workflow con-
trol and an event mapper that converts GridAnt events into
OGSA-specific events.
The GridAnt system presented in this paper is a work in

progress. Although an initial prototype is available for eval-
uation, it will undergo significant extensions based on com-
munity feedback. Concurrent research is focusing on issues
such as extending the available set of workflow tasks to in-
corporate more sophisticate control structures. Further, the
GridAnt system needs to be extended into a service-oriented
architecture in order to act as a proxy on behalf of the Grid-
users. An advanced information exchange mechanism is be-
ing designed to incorporate dynamic publish/subscribe style
of communication between independent tasks. The current
implementation of GridAnt supports the Globus Toolkit ver-
sions 2 and 3; but efforts are being made to support other
Grid environments such as Unicore, Legion, and Condor.
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